Obtain the relation between torque of a system of particles and angular moment.
The total angular moment of a system of particles is the angular moment of individual particles. For a system of $n$ particles,
$\overrightarrow{\mathrm{L}}=\overrightarrow{l_{1}}+\overrightarrow{l_{2}}+\overrightarrow{l_{3}}+\ldots \overrightarrow{l_{n}}$
$=\sum_{i=1}^{n} \overrightarrow{l_{i}} \text { where } i=1,2,3, \ldots n$
and $\overrightarrow{l_{i}}=\overrightarrow{r_{i}} \times \overrightarrow{p_{i}}$
where $\overrightarrow{r_{i}}$ is the position vector of the $i^{\text {th }}$ particle with respect to a given origin and $\vec{p}_{i}$ is the linear momentum of the particle.
The total angular momentum of the system of particles as
$\therefore \overrightarrow{\mathrm{L}}=\sum_{i=1}^{n} \vec{l}_{i}=\sum_{i=1}^{n} \overrightarrow{r_{i}} \times \vec{p}_{i}$
Differentiating w.r.t. time
$\therefore \frac{d \overrightarrow{\mathrm{L}}}{d t}=\sum_{i=1}^{n} \overrightarrow{\tau_{i}} \quad \ldots \text { (1) }\left[\because \overrightarrow{r_{i}} \times \overrightarrow{p_{i}}=\overrightarrow{\tau_{i}}\right]$
$\therefore \vec{\tau}=\sum_{i=1}^{n} \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}_{i}} \quad[\because \vec{\tau}=\vec{r} \times \overrightarrow{\mathrm{F}}]$
Here, $\overrightarrow{\mathrm{F}}_{i}$ is the force on the $i^{\text {th }}$ particle is the vector sum of external forces $\mathrm{F}_{\text {iext }}$ acting on the particle and the internal forces $F_{i \text { (int) }}$ exerted on it by the other particles of the system.
$\therefore \overrightarrow{\mathrm{F}}_{i}=\overrightarrow{\mathrm{F}}_{i(\mathrm{ext})}+\overrightarrow{\mathrm{F}}_{i(\mathrm{int})}$
$\therefore \vec{\tau}=\vec{\tau}_{(\mathrm{ext})}+\vec{\tau}_{(\mathrm{int})}$
where $\vec{\tau}_{(\mathrm{ext})}=\sum \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}}_{i(\mathrm{ext})}$ and
$\vec{\tau}_{\text {(int) }}=\sum \overrightarrow{r_{i}} \times \overrightarrow{\mathrm{F}_{i}}_{\text {(int) }}$
A flywheel can rotate in order to store kinetic energy. The flywheel is a uniform disk made of a material with a density $\rho $ and tensile strength $\sigma $ (measured in Pascals), a radius $r$ , and a thickness $h$ . The flywheel is rotating at the maximum possible angular velocity so that it does not break. Which of the following expression correctly gives the maximum kinetic energy per kilogram that can be stored in the flywheel ? Assume that $\alpha $ is a dimensionless constant
A particle of mass $1 kg$ is subjected to a force which depends on the position as $\vec{F}=-k(x \hat{i}+y \hat{j}) kgms ^{-2}$ with $k=1 kgs ^{-2}$. At time $t=0$, the particle's position $\vec{r}=\left(\frac{1}{\sqrt{2}} \hat{i}+\sqrt{2} \hat{j}\right) m$ and its velocity $\vec{v}=\left(-\sqrt{2} \hat{i}+\sqrt{2} \hat{j}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$. Let $v_x$ and $v_y$ denote the $x$ and the $y$ components of the particle's velocity, respectively. Ignore gravity. When $z=0.5 m$, the value of $\left(x v_y-y v_x\right)$ is. . . . . $m^2 s^{-1}$
Write $SI$ unit of angular momentum and dimensional formula.
A particle is moving along a straight line parallel to $x-$ axis with constant velocity. Its angular momentum about the origin
A body of mass $5 \mathrm{~kg}$ moving with a uniform speed $3 \sqrt{2} \mathrm{~ms}^{-1}$ in $\mathrm{X}-\mathrm{Y}$ plane along the line $\mathrm{y}=\mathrm{x}+4$.The angular momentum of the particle about the origin will be______________ $\mathrm{kg}\ \mathrm{m} \mathrm{s}^{-1}$.