Obtain the scalar product of two mutually perpendicular vectors.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\text { If } \vec{A} \perp \vec{B}, \text { then } \theta=90^{\circ}$

$\therefore \quad \vec{A} \cdot \vec{B}=\mathrm{ABcos} 90^{\circ}$

$=0$

$\because \cos 90^{\circ}=0$

This is the condition for mutually perpendicular of two non-zero vectors.

Similar Questions

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec  B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ $(i)$ $\theta = \,{0^o}$
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ $(ii)$ $\theta = \,{90^o}$
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ $(iii)$ $\theta = \,{180^o}$
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ $(iv)$ $\theta = \,{60^o}$

${\vec  A }$, ${\vec  B }$ and ${\vec  C }$ are three non-collinear, non co-planar vectors. What can you say about directin of $\vec  A \, \times \,\left( {\vec  B \, \times \vec  {\,C} } \right)$ ?

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIIMS 2012]