3.Current Electricity
hard

On interchanging the resistances, the balance point of a meter bridge shifts to the left by $10\ cm$. The resistance of their series combination is $1\ k\Omega$. How much was the resistance on the left slot before interchanging the resistances?  ..................  $\Omega$

A

$505 $

B

$550$ 

C

$910$ 

D

$990$ 

(JEE MAIN-2018)

Solution

$\mathrm{R}_{1}+\mathrm{R}_{2}=1000$

$\Rightarrow \mathrm{R}_{2}=1000-\mathrm{R}_{1}$

On balancing condition

$\mathrm{R}_{1}(100-I)=\left(1000-\mathrm{R}_{1}\right) l$      …$(i)$

On Interchaanging resistance balance point shifts left by $10 \,cm$

On balancing condition $\left(1000-R_{1}\right)(110-l)=R_{1}(l-10)$

or, $\mathrm{R}_{1}(l-10)=\left(1000-\mathrm{R}_{1}\right)(110-l) \ldots(\mathrm{ii})$

Dividing eqn $(i)$ by $(ii)$

$\frac{100-l}{l-10}=\frac{l}{110-l}$

$\Rightarrow \quad(100-l)(110-l)=l(l-10)$

$ \Rightarrow 11000 – 100l – 110l + {l^2} = {l^2} – 10l$

$\Rightarrow 11000=200 l$

or, $l=55$

Putting the value of $'l'{\rm{in}}\,{\rm{eqn}}(i)$

$\mathrm{R}_{1}(100-55)=\left(1000-\mathrm{R}_{1}\right) 55$

$\Rightarrow \mathrm{R}_{1}(45)=\left(1000-\mathrm{R}_{1}\right) 55$

$\Rightarrow \mathrm{R}_{1}(9)=\left(1000-\mathrm{R}_{1}\right) 11$

$\Rightarrow 20 \mathrm{R}_{1}=11000$

$\therefore \quad \mathrm{R}_{1}=550\, \mathrm{K\Omega}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.