On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is

  • A

    $(-3,2)$

  • B

    $\left( { - \sqrt 2 ,\frac{8}{3}} \right)$

  • C

    $(3,2)$

  • D

    $\left( {3\sqrt 2 ,0} \right)$

Similar Questions

The equation of the ellipse whose foci are $( \pm 5,\;0)$ and one of its directrix is $5x = 36$, is

The minimum area of a triangle formed by any tangent to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{81}} = 1$ and the coordinate axes is 

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$

Let $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ and $ T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ Then $n ( S \cap T )$ is equal to $......$

  • [JEE MAIN 2022]

Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$