Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is

A

$(-3,2)$

B

$\left( { - \sqrt 2 ,\frac{8}{3}} \right)$

C

$(3,2)$

D

$\left( {3\sqrt 2 ,0} \right)$

Solution

Let $\mathrm{M}$ be $(\sqrt{18} \cos \theta, \sqrt{8} \sin \theta) .$ As shortest

distanoe lies along common normal

Given line will be parallel to the tangent at $\mathrm{M}$

$\frac{x \cos \theta}{\sqrt{18}}+\frac{y \sin \theta}{\sqrt{8}}=1$ is parallel to

$2 x-3 y+25=0$

$\Rightarrow-\frac{\sqrt{8} \cos \theta}{\sqrt{18} \sin \theta}=\frac{2}{3} $

$\Rightarrow \tan \theta=-1$

$\Rightarrow \theta=\frac{3 \pi}{4} \Rightarrow$ point $M$ is $(-3,2)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.