- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3 $ then the eccentricity of the ellipse is :
A
$\frac{{2\sqrt 2 }}{3}$
B
$\frac{{\sqrt 5 }}{3}$
C
$\frac{8}{9}$
D
$\frac{2}{3}$
Solution
$\frac{2}{3}=\frac{{\pi \,{a^2}\,\, – \,\,\pi \,ab}}{{\pi \,{a^2}}} = 1 – \frac{b}{a} = 1 – \sqrt {1\,\, – \,\,{e^2}} $
$\Rightarrow $ $e^2 =\frac{8}{9}$ $ \Rightarrow$ $ e =\frac{{2\sqrt 2 }}{3}$
Standard 11
Mathematics