Particles of masses $m, 2m, 3m, ...... nm$ $grams$ are placed on the same line at distances $l, 2l, 3l,...., nl\, cm$ from a fixed point. The distance of the centre of mass of the particles from the fixed point (in centimetres) is
$\frac{{\left( {2n + 1} \right)l}}{3}$
$\frac{l}{{n + 1}}$
$\frac{{n\left( {{n^2} + 1} \right)l}}{2}$
$\frac{{2l}}{{n\left( {{n^2} + 1} \right)}}$
Two spheres are rolling with same velocity (for their $C. M.$) their ratio of kinetic energy is $2 : 1$ & radius ratio is $2 : 1$, their mass ratio will be :
A $T$ shaped object with dimensions shown in the figure, is lying a smooth floor. A force $'\vec F'$ is applied at the point $P$ parallel to $AB,$ such that the object has only the translational motion without rotation. Find the location of $P$ with respect to $C$
A wheel of radius $r$ rolls without slipping with a speed $v$ on a horizontal road. When it is at a point $A$ on the road, a small jump of mud separates from the wheel at its highest point $B$ and drops at point $C$ on the road. The distance $AC$ will be
From a solid sphere of mass $M$ and radius $R$ a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendicular to one of its faces is
If the equation for the displacement of a particle moving on a circular path is given by:
$\theta = 2t^3 + 0.5$
Where $\theta $ is in radian and $t$ in second, then the angular velocity of the particle at $t = 2\,sec$ is $t=$ ....... $rad/sec$