Planck's constant $(h),$ speed of light in vacuum $(c)$ and Newton's gravitational constant $(G)$ are three fundamental constants. Which of the following combinations of these has the dimension of length $?$
$\sqrt {\frac{{hc}}{G}} $
$\;\sqrt {\frac{{Gc}}{{{h^{\frac{3}{2}}}}}} $
$\frac{{\sqrt {hG} }}{{{c^{\frac{3}{2}}}}}$
$\;\frac{{\sqrt {hG} }}{{{c^{\frac{5}{2}}}}}$
The speed of light $(c)$, gravitational constant $(G)$ and planck's constant $(h)$ are taken as fundamental units in a system. The dimensions of time in this new system should be
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
If $L,\,C$ and $R$ represent inductance, capacitance and resistance respectively, then which of the following does not represent dimensions of frequency
If the capacitance of a nanocapacitor is measured in terms of a unit $u$ made by combining the electric charge $e,$ Bohr radius $a_0,$ Planck's constant $h$ and speed of light $c$ then