Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2s$ will be ............. $\mathrm{m}/ \mathrm{s}$
$1$
$4$
$2$
$2\sqrt 2$
A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
A neutron travelling with a velocity $v$ and $K.E.$ $E $ collides perfectly elastically head on with the nucleus of an atom of mass number $A$ at rest. The fraction of total energy retained by neutron is
The total work done on a particle is equal to the change in its kinetic energy. This is applicable
A body of mass $m$ is accelerated uniformly from rest to a speed $v$ in a time $T$. The instantaneous power delivered to the body as a function of time is given by
A ball of mass $m$ is dropped from a heigh $h$ on a platform fixed at the top of a vertical spring, as shown in figure. The platform is depressed by a distance $x.$ Then the spring constant is