Projectiles $A$ and $B$ are thrown at angles of $45^{\circ}$ and $60^{\circ}$ with vertical respectively from top of a $400 \mathrm{~m}$ high tower. If their ranges and times of flight are same, the ratio of their speeds of projection $v_A: v_B$ is :
$1: \sqrt{3}$
$\sqrt{2}: 1$
$1: 2$
$1: \sqrt{2}$
A projectile is launched at an angle ' $\alpha$ ' with the horizontal with a velocity $20 \; ms ^{-1}$. After $10 s$, its inclination with horizontal is ' $\beta$ '. The value of $\tan \beta$ will be : $\left( g =10 \; ms ^{-2}\right)$
A particle is projected in air at some angle to the horizontal, moves along parabola as shown in figure where $x$ and $y$ indicate horizontal and vertical directions respectively. Shown in the diagram, direction of velocity and acceleration at points $A, \,B$ and $C$.
A cannon on a level plane is aimed at an angle $\theta $ above the horizontal and a shell is fired with a muzzle velocity ${v_0}$ towards a vertical cliff a distance $D$ away. Then the height from the bottom at which the shell strikes the side walls of the cliff is
When a body is thrown with a velocity $u$ making an angle $\theta $ with the horizontal plane, the maximum distance covered by it in horizontal direction is
A small boy is throwing a ball towards a wall $6 \,m$ in front of him. He releases the ball at a height of $1.4 \,m$ from the ground. The ball bounces from the wall at a height of $3 \,m$, rebounds from the ground and reaches the boy's hand exactly at the point of release. Assuming the two bounces (one from the wall and the other from the ground) to be perfectly elastic, .......... $m$ far ahead of the boy did the ball bounce from the ground