Projectiles $A$ and $B$ are thrown at angles of $45^{\circ}$ and $60^{\circ}$ with vertical respectively from top of a $400 \mathrm{~m}$ high tower. If their ranges and times of flight are same, the ratio of their speeds of projection $v_A: v_B$ is :
$1: \sqrt{3}$
$\sqrt{2}: 1$
$1: 2$
$1: \sqrt{2}$
Match the columns
Column $-I$ $R/H_{max}$ |
Column $-II$ Angle of projection $\theta $ |
$A.$ $1$ | $1.$ ${60^o}$ |
$B.$ $4$ | $2.$ ${30^o}$ |
$C.$ $4\sqrt 3$ | $3.$ ${45^o}$ |
$D.$ $\frac {4}{\sqrt 3}$ | $4.$ $tan^{-1}\,4\,=\,{76^o}$ |
Two seconds after projection a projectile is travelling in a direction inclined at $30^o$ to horizontal, after one more second it is travelling horizontally. What is the magnitude and direction of its velocity at initial point
A wheel of radius $R$ is trapped in a mud pit and spinning. As the wheel is spinning, it splashes mud blobs with initial speed $u$ from various points on its circumference. The maximum height from the centre of the wheel, to which a mud blob can reach is
A stone is projected from a point on the ground so as to hit a bird on the top of a vertical pole of height $h$ and then attain a maximum height $2 h$ above the ground. If at the instant of projection the bird flies away horizontally with a uniform speed and if the stone hits the bird while descending, then the ratio of the speed of the bird to the horizontal speed of the stone is
A projectile is thrown in the upward direction making an angle of $60^o $ with the horizontal direction with a velocity of $147\ ms^{-1}$ . Then the time after which its inclination with the horizontal is $45^o $ , is ......... $\sec$