Gujarati
Hindi
3-2.Motion in Plane
normal

A stone is projected from a point on the ground so as to hit a bird on the top of a vertical pole of height $h$ and then attain a maximum height $2 h$ above the ground. If at the instant of projection the bird flies away horizontally with a uniform speed and if the stone hits the bird while descending, then the ratio of the speed of the bird to the horizontal speed of the stone is

A

$\frac{\sqrt{2}}{\sqrt{2}+1}$

B

$\frac{\sqrt{2}}{\sqrt{2}-1}$

C

$\frac{1}{\sqrt{2}}+\frac{1}{2}$

D

$\frac{2}{\sqrt{2}+1}$

Solution

(d)

$2 h=\frac{u_y^2}{2 g}$

or $u_y=2(\sqrt{g} h)$

$\operatorname{Now}\left(t_2-t_1\right) u_x=t_2 v_x$ or $\frac{v_x}{u_x}=\frac{t_2-t_1}{t_2}……..(i)$

Further $h=u_y t-\frac{1}{2}(g t)^2$

or $g t^2-2 u_y t+h=0$

or $g t^2-4(\sqrt{g h}) t+2 h=0$

$t_1= \frac{4 \sqrt{g h}-\sqrt{16 g h-8 g h}}{2 g}=(2-\sqrt{2})\left(\frac{\sqrt{h}}{g}\right)$

Substituting in Eq. (i) we have,

$\frac{v_x}{u_x}=\frac{2}{(\sqrt{2})+1}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.