8. Introduction to Trigonometry
medium

निम्नलिखित को सिद्ध कीजिए :

यदि $\tan A =\frac{3}{4},$ तो $\sin A \cos A =\frac{12}{25}$ है

Option A
Option B
Option C
Option D

Solution

Given, $\quad \tan A=\frac{3}{4}=\frac{P}{B}=\frac{\text { Perpendicular }}{\text { Base }}$

Let $P=3 k$ and $B=4 k$

By Pythagoras theorem,

$H^{2}=P^{2}+B^{2}=(3 k)^{2}+(4 k)^{2}$

$=9 k^{2}+16 k^{2}=25 k^{2}$

$\Rightarrow \quad H=5 k$ [since, side cannot be negative]

$\sin A=\frac{P}{H}=\frac{3 k}{5 k}=\frac{3}{5}$ and $\cos A=\frac{B}{H}=\frac{4 k}{5 k}=\frac{4}{5}$

Now, $\sin A \cos A=\frac{3}{5} \cdot \frac{4}{5}=\frac{12}{25}$ Hence proved.

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.