Reaction $aA + bB\,\to $ product. The rate of reaction $= k[A]^3\, [B]^0$ if the concentration of $A$ is double and concentration of $B$ is half the rate will be ?
$8$ times
Initially rate $=\mathrm{k}[\mathrm{A}]^{x}[\mathrm{~B}]^{y}=[\mathrm{A}]^{3}[\mathrm{~B}]^{0}=[\mathrm{A}]^{3}$
Concentration of $\mathrm{A}=$ double $=2 \mathrm{~A}$
Concentration of $\mathrm{B}=$ half $=\frac{\mathrm{B}}{2}$
Rate $=[2 \mathrm{~A}]^{3}\left[\frac{\mathrm{B}}{2}\right]^{0}$
$=8 \mathrm{~A}^{3}$
Why molecularity is applicable only for elementary reactions and order is applicable for elementary as well as complex reactions ?
Consider the following reaction,
$2 H _2( g )+2 NO ( g ) \rightarrow N _2( g )+2 H _2 O ( g )$
which following the mechanism given below:
$2 NO ( g ) \underset{ k _{-1}}{\stackrel{ k _1}{\rightleftharpoons}} N _2 O _2( g )$
$N _2 O _2( g )+ H _2( g ) \stackrel{ k _2}{\rightleftharpoons} N _2 O ( g )+ H _2 O ( g )$
$N _2 O ( g )+ H _2( g ) \stackrel{ k _3}{\rightleftharpoons} N _2( g )+ H _2 O ( g )$
(fast equilibrium)
(slow reaction)
(fast reaction)
The order of the reaction is
Determine the order of reaction on the basis of following data for the reaction $A + B \to C$
Exp. | $[A]$ | $[B]$ | Rate of reaction |
$1$ | $0.1$ | $0.1$ | $2 \times {10^{ - 3}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$ |
$2$ | $0.4$ | $0.1$ | $0.4 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$ |
$3$ | $0.1$ | $0.2$ | $1.4 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$ |
The rate of the reaction :
$2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
The relationship between $k$ and $k'$ and betweenk and $k''$ are
Rate constant for a reaction ${H_2} + {I_2} \to 2HI$ is $49$, then rate constant for reaction $2HI \to {H_2} + {I_2}$ is