Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass
$(a)$ Show $p = p _{t}^{\prime}+m_{t} V$
where $p$, is the momentum of the the particle (of mass $m$ ) and $p_{t}^{\prime \prime}=m_{t} v_{t}$,
Note $v_{t}$, is the velocity of the particle relative to the centre of mass. Also, prove using the definition of the centre of mass $\sum p _{t}^{\prime}=0$
$(b)$ Show $K=K^{\prime}+1 / 2 M V^{2}$
where $K$ is the total kinetic energy of the system of particles. $K^{\prime}$ is the total kinetic energy of the system when the particle velocities are taken with respect to the centre of mass and $M V^{2} / 2$ is the kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the system).
$(c)$ Show $L = L ^{\prime}+ R \times M V$
where $L ^{\prime}=\sum r _{t}^{\prime} \times p _{t}^{\prime}$ is the angular momentum of the system about the centre of mass with velocities taken relative to the centre of mass. Remember $r _{t}^{\prime}= r _{t}- R$; rest of the notation is the standard notation used in the chapter. Note $L$ ' and $M R \times V$ can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
$(d)$ Show $\frac{d L ^{\prime}}{d t}=\sum r _{t}^{\prime} \times \frac{d p ^{\prime}}{d t}$
Further, show that
$\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$
where $\tau_{c t t}^{\prime}$ is the sum of all external torques acting on the system about the centre of mass. (Hint: Use the definition of centre of mass and third law of motion. Assume the internal forces between any two particles act along the line joining the particles.)
$(a)$Take a system of $i$ moving particles.
Mass of the $i^{th}$ particle $=m_{i}$
Velocity of the $i^{\text {th}}$ particle $= v _{i}$
Hence, momentum of the $i^{\text {th}}$ particle, $p _{i}=m_{i} v _{i}$
Velocity of the centre of mass $= V$
The velocity of the $i^{\text {th }}$ particle with respect to the centre of mass of the system is given
as: $v ^{\prime}_{i}= v _{i}- V \ldots(1)$
Multiplying $m_{i}$ throughout equation $(1)$, we get:
$m_{i} v ^{\prime}_{i}=m_{i} v _{i}-m_{i} V$
$p ^{\prime}_{i}= p _{i}-m_{i} V$
Where,
$p _{i}^{\prime}=m_{i} v _{i}^{\prime}=$ Momentum of the $i^{\text {th }}$ particle with respect to the centre of mass of the
system $: p _{i}= p ^{\prime} i+m_{i} V$
We have the relation: $p ^{\prime} i=m_{i} v _{i}$
Taking the summation of momentum of all the particles with respect to the centre of mass of the system, we get:
$\sum_{i} p _{i}^{\prime}=\sum_{i} m_{i} v _{i}^{\prime}=\sum_{i} m_{i} \frac{d r _{i}^{\prime}}{d t}$
Where,
$r ^{\prime}=$ Position vector of $i$ th particle with respect to the centre of mass $v _{t}^{\prime}=\frac{d r ^{\prime}}{d t}$
As per the definition of the centre of mass, we have:
$\sum m_{i} r _{i}^{\prime}=0$
$\therefore \sum \limits _{i} m_{i} \frac{d r ^{\prime}}{d t}=0$
$\sum \limits _{i} p _{i}^{\prime}=0$
We have the relation for velocity of the $i^{\text {th }}$ particle as:
$v _{i}= v ^{\prime} i+ V$
$\sum_{i} m_{i} v _{i}=\sum_{i} m_{i} v _{i}^{\prime}+\sum_{i} m_{i} V$
Taking the dot product of equation (2) with itself, we get:
$\sum_{i} m_{i} v _{i}, \sum_{i} m_{i} v _{i}=\sum_{i} m_{i}\left( v _{i}^{\prime}+ v \right) \cdot \sum_{i} m_{i}\left( v _{i}^{\prime}+ v \right)$
$M^{2} \sum_{i} v_{i}^{2}=M^{2} \sum_{i} v_{i}^{2}+M^{2} \sum_{i} v _{i} v _{i}^{\prime}+M^{2} \sum_{i} v _{i}^{\prime} v _{i}+M^{2} V^{2}$
Here, for the centre of mass of the system of particles,
$\sum\limits_{i} v _{i} v ^{\prime}_i=-\sum\limits_{i} v _{i}^{\prime} v _{i}$
$M^{2} \sum_{i} v_{i}^{2}=M^{2} \sum_{i} v_{i}^{2}+M^{2} V^{2}$
$\frac{1}{2} M \sum_{i} v_{i}^{2}=\frac{1}{2} M \sum_{i} v_{i}^{\prime 2}+\frac{1}{2} M V^{2}$
$K=K^{\prime}+\frac{1}{2} M V^{2}$
Where,
$K= \frac{1}{2} M \sum_{i} v_{i}^{2}=$ Total kinetic energy of the system of particles
$K= \frac{1}{2} M \sum_{i} v_{i}^{\prime \prime 2}=$ Total kinetic energy of the system of particles with respect to the centre of mass
$\frac{1}{2} M V^{2}$
- Kinetic energy of the translation of the system as a whole
Position vector of the $i^{\text {th }}$ particle with respect to origin $= r _{i}$
Position vector of the $i$ "particle with respect to the centre of mass $= r ^{\prime} i$
Position vector of the centre of mass with respect to the origin $= R$
It is given that: $r ^{\prime} i= r i$
$- R r _{i}= r _{i}+ R$ We
have from part (a), pi
$= p ^{\prime} i+m i V$
Taking the cross product of this relation by $r _{i},$ we get:
$\sum_{i} r _{i} \times p _{i}=\sum_{i} r _{i} \times p _{i}^{\prime}+\sum_{i} r _{i} \times m_{i} V$
$L =\sum\left( r _{i}^{\prime}+ R \right) \times p _{i}^{\prime}+\sum\left( r _{i}^{\prime}+ R \right) \times m_{i} V$
$=\sum_{i} r _{i}^{\prime} \times p _{i}^{\prime}+\sum_{i} R \times p _{i}^{\prime}+\sum_{i} r _{i}^{\prime} \times m_{i} V +\sum_{i} R \times m_{i} V$
$= L ^{\prime}+\sum_{i} R \times p _{i}^{\prime}+\sum_{i} r _{i}^{\prime} \times m_{i} V +\sum_{i} R \times m_{i} V$
Where,
$R \times \sum_{i} p _{i}^{\prime}=0$ and
$\left(\sum_{i} r _{i}^{\prime}\right) \times M V = 0$
$\sum_{t} m_{i}=M$
$\therefore L = L ^{\prime}+R \times M V$
We have the relation:
$L ^{\prime}=\sum r ^{\prime}, \times p ^{\prime}$
$\frac{d L ^{\prime}}{d t}=\frac{d}{d t}\left(\sum r ^{\prime} \times p ^{\prime}\right)$
$=\frac{d}{d t}\left(\sum_{t} r _{t}^{\prime}\right) \times p _{i}^{\prime}+\sum_{t} r _{t}^{\prime} \times \frac{d}{d t}\left( p _{i}^{\prime}\right)$
$=\frac{d}{d t}\left(\sum_{i} m_{i} r _{i}^{\prime}\right) \times v _{i}^{\prime}+\sum_{i} r _{i}^{\prime} \times \frac{d}{d t}\left( p _{i}^{\prime}\right)$
Where, $r ^{\prime}$, is the position vector with respect to the centre of mass of the system of particles. $\therefore \sum m_{i} r _{i}^{\prime}=0$
$\therefore \frac{d L ^{\prime}}{d t}=\sum_{t} r _{t}^{\prime} \times \frac{d}{d t}\left( p _{i}^{\prime}\right)$
We have the relation:
$\frac{d L ^{\prime}}{d t}=\sum_{i} r ^{\prime}, \times \frac{d}{d t}\left( p _{i}^{\prime}\right)$
$=\sum_{i} r ^{\prime}, \times m_{i} \frac{d}{d t}\left( v ^{\prime}\right)$
Where, $\frac{d}{d t}\left( v ^{\prime}\right)$ is the rate of change of velocity of the $i$ th particle
with respect ot the centre of mass of the system
Therefore, according to Newton's third law of motion, we can write:
$m_{i} \frac{d}{d t}\left( v _{i}^{\prime}\right)=$ Extrenal force acting on the $i$ th particle $=\sum_{i}\left(\tau_{i}^{\prime}\right)$
i.e., $\sum_{i} r ^{\prime}, \times m_{i} \frac{d}{d t}\left( v _{i}^{\prime}\right)=\tau_{ ea }^{\prime}=$ External torque acting on the system as a whole
$\therefore \frac{d L ^{\prime}}{d t}=\tau^{\prime}_{ext }$
A ball is projected from top of a tower with a velocity of $5\,\, m/s$ at an angle of $53^o$ to horizontal. Its speed when it is at a height of $0.45 \,\,m$ from the point of projection is ........ $m/s$
$A$ projectile of mass $"m"$ is projected from ground with a speed of $50 \,m/s$ at an angle of $53^o$ with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion. The ratio of the radii of curvatures of the moving particle just before and just after the explosion are:
A spaceship of speed $v_0$ travelling along $+ y$ axis suddenly shots out one fourth of its part with speed $2v_0$ along $+ x$ -axis. $xy$ axes are fixed with respect to ground. The velocity of the remaining part is
The potential energy function for a particle executing linear simple harmonic motion is given by $V(x)=$ $k x^{2} / 2,$ where $k$ is the force constant of the oscillator. For $k=0.5\; N m ^{-1}$ the graph of $V(x)$ versus $x$ is shown in Figure. Show that a particle of total energy $1 \;J$ moving under this potential must 'turn back" when it reaches $x=\pm 2 m$
$A$ section of fixed smooth circular track of radius $R$ in vertical plane is shown in the figure. $A$ block is released from position $A$ and leaves the track at $B$. The radius of curvature of its trajectory when it just leaves the track at $B$ is: