8. Introduction to Trigonometry
easy

Show that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$

Option A
Option B
Option C
Option D

Solution

L.H.S. $=\tan ^{4} \theta+\tan ^{2} \theta=\tan ^{2} \theta\left(\tan ^{2} \theta+1\right)$

$=\tan ^{2} \theta \cdot \sec ^{2} \theta$ $\left[\because \sec ^{2} \theta=\tan ^{2} \theta+1\right]$

$=\left(\sec ^{2} \theta-1\right) \cdot \sec ^{2} \theta$ $\left[\because \tan ^{2} \theta=\sec ^{2} \theta-1\right]$

$=\sec ^{4} \theta-\sec ^{2} \theta=$ R.H.S.

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.