Show that average value of radiant flux density $'S'$ over a single period $'T'$ is given by $S = \frac{1}{{2c{\mu _0}}}E_0^2$.
Radiant flux density,
$\mathrm{S}=\frac{1}{\mu_{0}}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}})$
$\therefore \mathrm{S}=c^{2} \in_{0}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}) \ldots \text { (1) }\left[\because c=\frac{1}{\sqrt{\mu_{0} \in_{0}}}\right]$
Let electromagnetic waves propagate in $x$-direction. Electric field vector in $y$-direction and mag netic field vector in $z$-direction. Hence,
$\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}_{0}} \cos (k x-\omega t)$
$\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}_{0}} \cos (k x-\omega t)$
$\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}=\left(\overrightarrow{\mathrm{E}_{0}} \times \overrightarrow{\mathrm{B}_{0}}\right) \cos ^{2}(k x-\omega t)$
$\mathrm{S}=c^{2} \in_{0}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}) \quad[\because \text { From equation (1)] }$
$c^{2} \in_{0}\left(\overrightarrow{\mathrm{E}_{0}} \times \overrightarrow{\mathrm{B}_{0}}\right) \cos ^{2}(k x-\omega t)$
$\left[\because\left|\overrightarrow{\mathrm{E}}_{0} \times \overrightarrow{\mathrm{B}}_{0}\right|=\mathrm{E}_{0} \mathrm{~B}_{0} \sin 90^{\circ}=\mathrm{E}_{0} \mathrm{~B}_{0}\right]$
and $\int_{0}^{\mathrm{T}} \cos ^{2}(k x-\omega t) d t=\frac{\mathrm{T}}{2}$
The magnetic field of a plane electromagnetic Wave is $\overrightarrow{ B }=3 \times 10^{-8} \sin [200 \pi( y + ct )] \hat{ i }\, T$ Where $c=3 \times 10^{8} \,ms ^{-1}$ is the speed of light. The corresponding electric field is
If a source of power $4\ kW$ produces $10^{20}$ photons/second , the radiation belongs to a part of the spectrum called
The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by
$E _{ x }= E _0 \sin ( kz -\omega t )$
$B _{ y }= B _0 \sin ( kz -\omega t )$
Then the correct relation between $E_0$ and $B_0$ is given by
A red $LED$ emits light at $0.1$ watt uniformly around it. The amplitude of the electric field of the light at a distance of $1\ m$ from the diode is....$ Vm^{-1}$
In a plane electromagnetic wave, the directions of electric field and magnetic field are represented by $\hat{ k }$ and $2 \hat{ i }-2 \hat{ j },$ respectively What is the unit vector along direction of propagation of the wave.