Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
To show: $A=(A \cap B) \cup(A-B)$
Let $x \in A$
We have to show that $x \in(A \cap B) \cup(A-B)$
Case $I$
$x \in A \cap B$
Then, $x \in(A \cap B) \subset(A \cup B) \cup(A-B)$
Case $II$
$x \notin A \cap B$
$\Rightarrow x \notin A$ or $x \notin B$
$\therefore x \notin B[x \notin A]$
$\therefore x \notin A-B \subset(A \cup B) \cup(A-B)$
$\therefore A \subset(A \cap B) \cup(A-B)$ ...........$(1)$
It is clear that
$A \cap B \subset A$ and $(A-B) \subset A$
$\therefore(A \cap B) \cup(A-B) \subset A$ ..........$(2)$
From $(1)$ and $(2),$ we obtain
$A=(A \cap B) \cup(A-B)$
To prove: $A \cup(B-A) \subset A \cup B$
Let $x \in A \cup(B-A)$
$\Rightarrow x \in A$ or $(x \in B$ and $x \notin A)$
$ \Rightarrow (x \in A$ or $x \in B)$ and $(x \in A$ or $x \notin A)$
$\Rightarrow x \in(A \cup B)$
$\therefore A \cup(B-A) \subset(A \cup B) $ .........$(3)$
Next, we show that $(A \cup B) \subset A \cup(B-A)$
Let $y \in A \cup B$
$\Rightarrow y \in A$ or $y \in B$
$ \Rightarrow (y \in A$ or $y \in B)$ and $(y \in A{\rm{ }}$ or $y \notin A)$
$\Rightarrow y \in A$ or $(y \in B$ and $y \notin A)$
$\Rightarrow y \in A \cup(B-A)$
$\therefore A \cup B \subset A \cup(B-A)$ ...........$(4$)
Hence, from $(3)$ and $(4)$, we obtain $A \cup(B-A)=A \cup B$.
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap C$
If $A=\{x \in R:|x|<2\}$ and $B=\{x \in R:|x-2| \geq 3\}$ then
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$B \cap D$
Let $A :\{1,2,3,4,5,6,7\}$. Define $B =\{ T \subseteq A$ : either $1 \notin T$ or $2 \in T \}$ and $C = \{ T \subseteq A : T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is $\dots\dots$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup C$