Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
To show: $A=(A \cap B) \cup(A-B)$
Let $x \in A$
We have to show that $x \in(A \cap B) \cup(A-B)$
Case $I$
$x \in A \cap B$
Then, $x \in(A \cap B) \subset(A \cup B) \cup(A-B)$
Case $II$
$x \notin A \cap B$
$\Rightarrow x \notin A$ or $x \notin B$
$\therefore x \notin B[x \notin A]$
$\therefore x \notin A-B \subset(A \cup B) \cup(A-B)$
$\therefore A \subset(A \cap B) \cup(A-B)$ ...........$(1)$
It is clear that
$A \cap B \subset A$ and $(A-B) \subset A$
$\therefore(A \cap B) \cup(A-B) \subset A$ ..........$(2)$
From $(1)$ and $(2),$ we obtain
$A=(A \cap B) \cup(A-B)$
To prove: $A \cup(B-A) \subset A \cup B$
Let $x \in A \cup(B-A)$
$\Rightarrow x \in A$ or $(x \in B$ and $x \notin A)$
$ \Rightarrow (x \in A$ or $x \in B)$ and $(x \in A$ or $x \notin A)$
$\Rightarrow x \in(A \cup B)$
$\therefore A \cup(B-A) \subset(A \cup B) $ .........$(3)$
Next, we show that $(A \cup B) \subset A \cup(B-A)$
Let $y \in A \cup B$
$\Rightarrow y \in A$ or $y \in B$
$ \Rightarrow (y \in A$ or $y \in B)$ and $(y \in A{\rm{ }}$ or $y \notin A)$
$\Rightarrow y \in A$ or $(y \in B$ and $y \notin A)$
$\Rightarrow y \in A \cup(B-A)$
$\therefore A \cup B \subset A \cup(B-A)$ ...........$(4$)
Hence, from $(3)$ and $(4)$, we obtain $A \cup(B-A)=A \cup B$.
If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $
Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is
The shaded region in given figure is-