किन्हीं दो समुच्चयों $A$ तथा $B$ के लिए सिद्ध कीजिए कि,
$A=(A \cap B) \cup(A-B)$ और $A \cup(B-A)=(A \cup B)$
To show: $A=(A \cap B) \cup(A-B)$
Let $x \in A$
We have to show that $x \in(A \cap B) \cup(A-B)$
Case $I$
$x \in A \cap B$
Then, $x \in(A \cap B) \subset(A \cup B) \cup(A-B)$
Case $II$
$x \notin A \cap B$
$\Rightarrow x \notin A$ or $x \notin B$
$\therefore x \notin B[x \notin A]$
$\therefore x \notin A-B \subset(A \cup B) \cup(A-B)$
$\therefore A \subset(A \cap B) \cup(A-B)$ ...........$(1)$
It is clear that
$A \cap B \subset A$ and $(A-B) \subset A$
$\therefore(A \cap B) \cup(A-B) \subset A$ ..........$(2)$
From $(1)$ and $(2),$ we obtain
$A=(A \cap B) \cup(A-B)$
To prove: $A \cup(B-A) \subset A \cup B$
Let $x \in A \cup(B-A)$
$\Rightarrow x \in A$ or $(x \in B$ and $x \notin A)$
$ \Rightarrow (x \in A$ or $x \in B)$ and $(x \in A$ or $x \notin A)$
$\Rightarrow x \in(A \cup B)$
$\therefore A \cup(B-A) \subset(A \cup B) $ .........$(3)$
Next, we show that $(A \cup B) \subset A \cup(B-A)$
Let $y \in A \cup B$
$\Rightarrow y \in A$ or $y \in B$
$ \Rightarrow (y \in A$ or $y \in B)$ and $(y \in A{\rm{ }}$ or $y \notin A)$
$\Rightarrow y \in A$ or $(y \in B$ and $y \notin A)$
$\Rightarrow y \in A \cup(B-A)$
$\therefore A \cup B \subset A \cup(B-A)$ ...........$(4$)
Hence, from $(3)$ and $(4)$, we obtain $A \cup(B-A)=A \cup B$.
यदि $X$ और $Y$ दो ऐसे समुचचय हैं कि $n( X )=17, n( Y )=23$ तथा $n( X \cup Y )=38,$ तो $n( X \cap Y )$ ज्ञात कीजिए
मान लीजिए कि $A =\{1,2,3,4,5,6\}, B =\{2,4,6,8\} A - B$ और $B - A$ ज्ञात कीजिए
दो समुच्चय $A, B $ विसंघित हैं, यदि और केवल यदि
निम्नलिखित समुच्चय युग्मों में से कौन से युग्म असंयुक्त हैं ?
$\{1,2,3,4\}$ तथा $\{x: x$ एक प्राकृत संख्या है और $4 \leq x \leq 6\}$
यदि $A, B$ और $C$ तीन ऐसे समुच्चय $( sets )$ हैं जिनके लिए $A \cap B=A \cap C$ एवं $A \cup B=A \cup C,$ तब