- Home
- Standard 12
- Mathematics
જો $A$ સંમિત અથવા વિસંમિત શ્રેણિક હોય, તદનુસાર સાબિત કરો કે $B ^{\prime}A B$ સંમિત અથવા વિસંમિત શ્રેણિક છે.
Solution
We suppose that $A$ is a symmetric matrix, then $A^{\prime}=A$ ……… $(1)$
Consider
$(B^{\prime} A B)^{\prime} =\left\{B^{\prime}(A B)\right\}^{\prime}$
$=(A B)^{\prime}(B)^{\prime}$ $[(A B)^{\prime}=B^{\prime} A^{\prime}]$
$=B^{\prime} A^{\prime}(B)$ $[(B^{\prime})^{\prime}=B]$
$=B^{\prime}(A^{\prime} B) $
$=B^{\prime}(A B)$ $[ $ Using $(1)]$
$\therefore $ $(B^{\prime} A B)^{\prime} =B^{\prime} A B$
Thus, if $A$ is a symmetric matrix, then $B^{\prime}A B$ is a symmetric matrix.
Now, we suppose that $A$ is a skew – symmetric matrix.
Then, $A^{\prime}=A$
-Consider
$\left(B^{\prime} A B\right)^{\prime}=\left[B^{\prime}(A B)\right]^{\prime}=(A B)^{\prime}(B)^{\prime}$
$=(B^{\prime} A^{\prime}) B=B^{\prime}(-A) B$
$=-B^{\prime} A B$
$\therefore $ $(B^{\prime} A B)^{\prime}=-B^{\prime} A B$
Thus, if $A$ is a skew – symmetric matrix then $B^{\prime} A B$ is a skew – symmetric matrix.
Hence, if $A$ is a asymmetric or skew – symmetric matrix, then $B^{\prime} A B$ is a symmetric or skew – ymmetric matrix accordingly.