Similar charges are placed at corners of a square and a charge $q_0$ is placed at it's centre find net force on it
$2\sqrt 2 \frac{{kq{q_0}}}{{{r^2}}}$
$\sqrt 2 \frac{{kq{q_0}}}{{{r^2}}}$
$\frac{{2kq{q_0}}}{{{r^2}}}$
$\frac{1}{{2\sqrt 2 }}\frac{{kq{q_0}}}{{{r^2}}}$
The charges on two sphere are $+7\,\mu C$ and $-5\,\mu C$ respectively. They experience a force $F$. If each of them is given and additional charge of $-2\,\mu C$, the new force of attraction will be
Select the correct alternative
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
Two balls of same mass and carrying equal charge are hung from a fixed support of length $l$. At electrostatic equilibrium, assuming that angles made by each thread is small, the separation, $x$ between the balls is proportional to
The ratio of gravitational force and electrostatic repulsive force between two electrons is approximately (gravitational constant $=6.7 \times 10^{-11} \,Nm ^2 / kg ^2$, mass of an electron $=9.1 \times 10^{-31} \,kg$, charge on an electron $=1.6 \times 10^{-19} C$ )