As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$
$200$
$300$
$400$
$100$
Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of $30^{\circ}$ with each other. When suspended in a liquid of density $0.8 \;g\, cm ^{-3}$, the angle remains the same. If density of the material of the sphere is $1.6\; g \,cm ^{-3}$, the dielectric constant of the liquid is
The electrostatic force of interaction between an uniformly charged rod having total charge $Q$ and length $L$ and a point charge $q$ as shown in figure is
${F_g}$ and ${F_e}$ represents gravitational and electrostatic force respectively between electrons situated at a distance $10\, cm$. The ratio of ${F_g}/{F_e}$ is of the order of
The force between two charges $0.06\,m$ apart is $5\,N$. If each charge is moved towards the other by $0.01\,m$, then the force between them will become.........$N$
Two charges of equal magnitudes and at a distance $r$ exert a force $F$ on each other. If the charges are halved and distance between them is doubled, then the new force acting on each charge is