- Home
- Standard 11
- Physics
Six wires each of cross-sectional area $A$ and length $l$ are combined as shown in the figure. The thermal conductivities of copper and iron are $K_1$ and $K_2$ respectively. The equivalent thermal resistance between points $A$ and $C$ is

$\frac{{l({K_1} + {K_2})}}{{{K_1}{K_2}A}}$
$\frac{{2l({K_1} + {K_2})}}{{{K_1}{K_2}A}}$
$\frac{l}{{({K_1} + {K_2})A}}$
$\frac{{2l}}{{({K_1} + {K_2})A}}$
Solution

Let $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ be the thermal of Wheat stone's bridge. the point $\mathrm{B}$ and $\mathrm{D}$ must be at the same temperature when the bridge is balanced. Therefore. thermal resistance of arm $BD$ becomes ineffective.
Now the equivalent circuit at balance is
The effective resistance between $A$ and $C$ is
$\mathrm{R} =\frac{\left(2 \mathrm{R}_{1}\right)\left(2 \mathrm{R}_{2}\right)}{2 \mathrm{R}_{1}+2 \mathrm{R}_{2}}$
$=\frac{2 \mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} $
${\rm{R}} = \frac{{2\frac{1}{{{{\rm{K}}_1}{\rm{A}}}} \cdot \frac{l}{{{{\rm{K}}_2}{\rm{A}}}}}}{{\frac{l}{{{{\rm{K}}_1}{\rm{A}}}} + \frac{l}{{{{\rm{K}}_2}{\rm{A}}}}}} = \frac{{2l}}{{\left( {{{\rm{K}}_1} + {{\rm{K}}_2}} \right){\rm{A}}}}$