Write the following sets in the set-builder form :
$\{ 2,4,6 \ldots \} $
Which of the following sets are finite or infinite.
$\{1,2,3, \ldots 99,100\}$
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \not\subset B$, then $x \in B$
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\varnothing$
Which of the following pairs of sets are equal ? Justify your answer.
$A = \{ \,n:n \in Z$ and ${n^2}\, \le \,4\,\} $ and $B = \{ \,x:x \in R$ and ${x^2} - 3x + 2 = 0\,\} .$