વિધાન $1$: $\sim (p \leftrightarrow \sim q)$એ $p\leftrightarrow q $ને તુલ્ય છે.
વિધાન $2$: $\sim (p \leftrightarrow \sim q)$ ટોટોલોજી છે.
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે
વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.
વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.
વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.
શરત $(p \wedge q) \Rightarrow p$ એ ......... છે
નીચેનામાંથી કયું વિધાન નિત્યસત્ય છે?
$ \sim s \vee \left( { \sim r \wedge s} \right)$ નું નિષેધ ......... ને સમાન છે
નીયે પ્રમાણે બે વિધાનો વિચારો :
$P_1: \sim( p \rightarrow \sim q )$
$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$
જો વિધાન $p \rightarrow((\sim p ) \vee q )$ નું મુલ્યાંકન $FALSE$ થતું હોય, તો :
બે વિધાનોમાં
$\left( S _1\right):( p \Rightarrow q ) \wedge( p \wedge(\sim q ))$ વિરોધાભાસ છે અને
$\left( S _2\right):( p \wedge q ) \vee((\sim p ) \wedge q ) \vee( p \wedge(\sim q )) \vee((\sim p ) \wedge(\sim q ))$ નિત્યસત્ય છે.