Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is a correct explanation for Statement$-1.$
Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is NOT a correct explanation for Statement$-1.$
Statement$-1$ is True, Statement$-2$ is False.
Statement$-1$ and Statement$-2$ both are False
If $p : 5$ is not greater than $2$ and $q$ : Jaipur is capital of Rajasthan, are two statements. Then negation of statement $p \Rightarrow q$ is the statement
If $(p \wedge \sim q) \wedge r \to \sim r$ is $F$ then truth value of $'r'$ is :-
If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is
The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow q ]$ is