Mathematical Reasoning
normal

Statement$-I :$  $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim  q)\vee \sim  (p\vee \sim  q) .$
Statement$-II :$  $p\rightarrow (p\rightarrow q)$ is a tautology.

A

Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is a correct explanation for Statement$-1.$

B

Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is NOT a correct explanation for Statement$-1.$

C

Statement$-1$ is True, Statement$-2$ is False.

D

Statement$-1$ and Statement$-2$ both are False

Solution

$ \sim \left( {p \leftrightarrow q} \right) \equiv  \sim \left( {\left( {p \to q} \right) \wedge \left( {q \to p} \right)} \right)$

$ \equiv  \sim \left( {p \to q} \right) \vee  \sim \left( {q \to p} \right)$

$ \equiv \left( {p \wedge  – q} \right) \vee  \sim \left( { \sim q \vee p} \right)$

and $p \to \left( {p + q} \right) \equiv p \to \left( { \sim p \vee q} \right)$ is not a tautology.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.