त्रिज्या $R$ के एक वृत्त की परिधि पर $10$ आवेश ऐसे रखे गये हैं जिससे क्रमागत आवेशों के बीच कोणीय दूरी समान रहें। एकान्तर आवेशों $1,3,5,7,9$ के ऊपर क्रमशः $(+q)$ आवेश और $2 ,4,6,8,10$ के ऊपर क्रमशः $(-q)$ आवेश हैं। वृत्त के केन्द्र पर विभव $(V)$ और विधुत क्षेत्र $( E )$ होगी।
(अनन्त पर $V =0$ लीजिए)
$V =\frac{10 q }{4 \pi \epsilon_{0} R } ; E =\frac{10 q }{4 \pi \epsilon_{0} R ^{2}}$
$V =0, E =\frac{10 q }{4 \pi \epsilon_{0} R ^{2}}$
$V =0, E =0$
$V =\frac{10 q }{4 \pi \varepsilon_{0} R } ; E =0$
$1000$ पानी की छोटी बूँदें जिनमें प्रत्येक की त्रिज्या $r$ एवं आवेश $q$ है, एक साथ मिलकर एक गोलाकार बूँद बनाती हैं। बड़ी बूँद का विभव छोटी बूँद के विभव का है
तांबे के गोलीय उदासीन कण की त्रिज्या $10 \,nm \left(1 \,nm =10^{-9} \,m \right)$ है। एक समय पर एक इलेक्ट्रॉन दे कर धीरे-धीरे इस कण पर विभव आरोपित करके आवेशित करते है। कण पर कुल आवेश तथा आरोपित विभव के मध्य आरेख निम्न होगा।
किसी स्थान पर एक विद्युत क्षेत्र, $\overrightarrow{ E }=(25 \hat{ i }+30 \hat{ j }) NC ^{-1}$, विद्यमान है। यदि मूलबिन्दु पर विभव का मान शून्य माना जाय तो, $x=2\; m , y=2\; m$ पर विभव होगा :
किसी ($R$) त्रिज्या वाले आवेशित चालक गोले के केन्द्र से त्रिज्मीय दूरी $(\mathrm{r})$ के साथ विधुत विभव $(\mathrm{V})$ में परिवर्तनों को निम्न में से कौन सा विकल्प सही निरूपित करता है ?
एक समद्विबाहु त्रिभुज के $B$ व $C$ शीर्षों पर $ + \,q$ तथा $ - \,q$ आवेश रखे गये हैं शीर्ष $A$ पर विभव होगा