Ten trucks, numbered $1$ to $10$ , are carrying packets of sugar. Each packet weights either $999\,g$ or $1000\,g$ and each truck carries only the packets equal weights. The combined weight of $1$ packet selected from the first truck,$2$ packets from the second,$4$ packets from the third, and so on, and $2^9$ packet from the tenth truck is $1022870\,g$. The trucks that have the lighter bags are
$1,3,5$
$2,4,5$
$1,9$
$2,8$
If every term of a $G.P.$ with positive terms is the sum of its two previous terms, then the common ratio of the series is
The sum can be found of a infinite $G.P.$ whose common ratio is $r$
Let ${a_n}$ be the ${n^{th}}$ term of the G.P. of positive numbers. Let $\sum\limits_{n = 1}^{100} {{a_{2n}}} = \alpha $ and $\sum\limits_{n = 1}^{100} {{a_{2n - 1}}} = \beta $, such that $\alpha \ne \beta $,then the common ratio is
Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
The value of $\overline {0.037} $ where, $\overline {.037} $ stands for the number $0.037037037........$ is