Gujarati
8. Sequences and Series
easy

If $x,\,2x + 2,\,3x + 3,$are in $G.P.$, then the fourth term is

A

$27$

B

$- 27$

C

$13.5$

D

$- 13.5$

Solution

(d) Given that $x,\;2x + 2,\;3x + 3$ are in $G.P.$

Therefore, ${(2x + 2)^2} = x(3x + 3) $

$\Rightarrow {x^2} + 5x + 4 = 0$

$ \Rightarrow (x + 4)(x + 1) = 0$

$\Rightarrow x = – 1,\; – 4$

Now first term $a = x$

Second term $ar = 2(x + 1)$

$ \Rightarrow r = \frac{{2(x + 1)}}{x}$

then ${4^{th}}$ term $ = a{r^3}$$ = x{\left[ {\frac{{2(x + 1)}}{x}} \right]^3} = \frac{8}{{{x^2}}}{(x + 1)^3}$

Putting $x = – 4$

We get ${T_4} = \frac{8}{{16}}{( – 3)^3} = – \frac{{27}}{2} = – 13.5$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.