Gujarati
Hindi
12.Kinetic Theory of Gases
normal

The amount of heat energy required to raise the temperature of $1\, g$ of helium from $T_1\,K$ to $T_2K$ is

A

$\frac{3}{2}\,{N_a}{k_B}\,\left( {{T_2} - {T_1}} \right)$

B

$\frac{3}{4}\,{N_a}{k_B}\,\left( {{T_2} - {T_1}} \right)$

C

$\frac{3}{4}\,{N_a}{k_B}\,\left( {\frac{{{T_2}}}{{{T_1}}}} \right)$

D

$\frac{3}{8}\,{N_a}{k_B}\,\left( {{T_2} - {T_1}} \right)$

Solution

As here volume of the gas remains constant, therefore, the amount of heat energy to raise the temperature of the gas is :

$\Delta Q=n C_{v} \Delta T$

Here, number of moles, $n=\frac{1}{4}$

$C_{v}=\frac{3}{2} R \quad(\because \text { He is a monoatomic gas })$

$\Delta T=T_{2}-T_{1}$

$\therefore \Delta Q=\frac{1}{4}\left(\frac{3}{2} R\right)\left(T_{2}-T_{1}\right)$

$=\frac{3}{8} N_{a} K_{B}\left(T_{2}-T_{1}\right) \quad\left[\because k_{B}=\frac{R}{N_{a}}\right]$

Hence, correct answer is $( 4)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.