- Home
- Standard 11
- Physics
3-1.Vectors
medium
Two vectors $\vec A\,{\rm{ and }}\vec B$ are such that $\vec A + \vec B = \vec A - \vec B$. Then
A$\vec A\,.\,\vec B = 0$
B$\vec A \times \vec B = 0$
C$\vec A = 0$
D$\overrightarrow B = 0$
Solution
$\vec{A}+\vec{B}=\vec{A}-\vec{B}$
$(\vec{A}-\vec{A})+\vec{B}+\vec{B}=0$
$0+2\vec{B}=0$
$\vec{B}=0$
$(\vec{A}-\vec{A})+\vec{B}+\vec{B}=0$
$0+2\vec{B}=0$
$\vec{B}=0$
Standard 11
Physics
Similar Questions
Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, – \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, – \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
medium