The area of its cross-section is $1.2 \times {10^{ - 3}}{m^2}$. Around its central section, a coil of $300$ turns is wound. If an initial current of $2A$ in the solenoid is reversed in $0.25\, sec$, then the $e.m.f$. induced in the coil is
$6 \times {10^{ - 4}}\,V$
$4.8 \times {10^{ - 3}}\,V$
$6 \times {10^{ - 2}}\,V$
$48 \,mV$
The mutual inductance between the rectangular loop and the long straight wire as shown in figure is $M$.
Explain mutual induction and derive equation of mutual $\mathrm{emf}$.
What is the coefficient of mutual inductance when the magnetic flux changes by $2 \times {10^{ - 2}}\,Wb$ and change in current is $0.01\,A$......$henry$
With the decrease of current in the primary coil from $2\,amperes$ to zero value in $0.01\,s$ the $emf$ generated in the secondary coil is $1000\,volts$. The mutual inductance of the two coils is......$H$
The mutual inductance between a primary and secondary circuits is $0.5 \,H$. The resistances of the primary and the secondary circuits are $20\,\Omega$ and $5\,\Omega $ respectively. To generate a current of $0.4 \,A$ in the secondary, current in the primary must be changed at the rate of.....$A/s$