Gujarati
Hindi
4.Average
hard

The average of $n$ numbers $x_{1}, x_{2}, \ldots, x_{n}$ is $x$. Then, the value of $\sum \limits_{i=1}^{n}\left(x_{i}-\bar{x}\right)$ is equal to

A

$n$

B

$0$

C

$n \bar{x}$

D

$\bar{x}$

Solution

By the formula

$\frac{\left(x_{1}+x_{2}+x_{3} \cdots+x_{n}\right)}{n}=\bar{x}$ …..$(i)$

$\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$

Putting value of $i$ from $(i)$ to $n$.

$\left(x_{1}-\bar{x}\right)+\left(x_{2}-\bar{x}\right)+\left(x_{3}-\bar{x}\right)+\ldots .+\left(x_{n}-\bar{x}\right)$ from $(i)$

$=n \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)}{n}-n \bar{x}$

$\left[\frac{\left(x_{1}+x_{2}+\ldots .+x_{n}\right)}{n}=\bar{x}\right]=n \bar{x}-n \bar{x}=0$

Standard 13
Quantitative Aptitude

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.