Gujarati
Hindi
12.Kinetic Theory of Gases
normal

The average translational energy and the rms speed of molecules of a sample of oxygen gas at $300\ K$ are $6.21 \times 10^{-21}\ J$ and $484\ m/s$ respectively. The corresponding values at $600\ K$ are nearly (assuming ideal gas behaviour)

A

$12.42 \times {10^{ - 21}} J;$     $968\ m/s$

B

$8.78 \times {10^{ - 21}}J;$     $684\ m/s$

C

$6.21 \times {10^{ - 21}}J;$     $968\ m/s$

D

$12.42 \times {10^{ - 21}}J;$     $684/ m/s$

Solution

Average translation energy $\mathrm{E} \propto \mathrm{T}$

and rms speed                   ${v_{rms}} \propto \sqrt T $

If temperature is doubled, average energy is also

doubled and rms speed becomes $\sqrt{2}$ times.

Hence, $\mathrm{E}=2 \times 6.21 \times 10^{-21} \mathrm{\,J}$

$=12.42 \times 10^{-21} \mathrm{\,J}$

and $\mathrm{v}_{\mathrm{rms}}=\sqrt{2} \times 484 \mathrm{\,m} / \mathrm{s}=684 \mathrm{\,m} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.