The Bernoulli's equation is given by $p +\frac{1}{2} \rho v ^{2}+ h \rho g = k$
where $p =$ pressure, $\rho =$ density, $v =$ speed, $h =$ height of the liquid column, $g=$ acceleration due to gravity and $k$ is constant. The dimensional formula for $k$ is same as that for
Velocity gradient
Pressure gradient
Modulus of elasticity
Thrust
Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?
The dimensions of $K$ in the equation $W = \frac{1}{2}\,\,K{x^2}$ is
Heat produced in a current carrying conducting wire depends on current $I$, resistance $R$ of the wire and time $t$ for which current is passed. Using these facts, obtain the formula for heat energy.
To find the distance $d$ over which a signal can be seen clearly in foggy conditions, a railways engineer uses dimensional analysis and assumes that the distance depends on the mass density $\rho$ of the fog, intensity (power/area) $S$ of the light from the signal and its frequency $f$. The engineer find that $d$ is proportional to $S ^{1 / n}$. The value of $n$ is:
In terms of basic units of mass $(M)$, length $(L)$, time $(T)$ and charge $(Q)$, the dimensions of magnetic permeability of vacuum $\left(\mu_0\right)$ would be