Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is

  • [JEE MAIN 2024]
  • A

    $\mathrm{L}^{-2} \mathrm{M}^1 \mathrm{~T}^0$

  • B

    $\mathrm{L}^2 \mathrm{M}^{-1} \mathrm{~T}^1$

  • C

    $\mathrm{L}^{-2} \mathrm{M}^{-1} \mathrm{~T}^1$

  • D

    $\mathrm{L}^0 \mathrm{M}^{-1} \mathrm{~T}^1$

Similar Questions

The dimensions of $\frac{\alpha}{\beta}$ in the equation $F=\frac{\alpha-t^2}{\beta v^2}$, where $F$ is the force, $v$ is velocity and $t$ is time, is ..........

A force $F$ is given by $F = at + b{t^2}$, where $t$ is time. What are the dimensions of $a$ and $b$

Obtain the relation between the units of some physical quantity in two different systems of units. Obtain the relation between the $MKS$ and $CGS$ unit of work.

if Energy is given by $U = \frac{{A\sqrt x }}{{{x^2} + B}},\,$, then dimensions of $AB$ is

A force is represented by $\mathrm{F}=a \mathrm{x}^2+\mathrm{bt}^{1 / 2}$. Where $\mathrm{x}=$ distance and $\mathrm{t}=$ time. The dimensions of $\mathrm{b}^2 / \mathrm{a}$ are :

  • [JEE MAIN 2024]