The capacity of parallel plate condenser depends on
The type of metal used
The thickness of plates
The potential applied across the plates
The separation between the plates
The capacitance of a metallic sphere will be $1\,\mu F$, if its radius is nearly
The charges on two plates of a $10\,\mu f$ capacitor are $5\,\mu C$ and $15\,\mu C$ then the potential difference across the capacitor plates is........$V$
A cylindrical capacitor has two co-axial cylinders of length $15\; cm$ and radii $1.5 \;cm$ and $1.4\; cm .$ The outer cylinder is earthed and the inner cylinder is given a charge of $3.5\; \mu \,C .$ Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends).
A $500\,\mu F$ capacitor is charged at a steady rate of $100\, \mu C/sec$. The potential difference across the capacitor will be $10\, V$ after an interval of.....$sec$
Answer carefully:
$(a)$ Two large conducting spheres carrying charges $Q _{1}$ and $Q _{2}$ are brought close to each other. Is the magnitude of electrostatic force between them exactly given by $Q _{1} Q _{2} / 4 \pi \varepsilon_{0} r^{2},$ where $r$ is the distance between their centres?
$(b)$ If Coulomb's law involved $1 / r^{3}$ dependence (instead of $1 / r^{2}$ ), would Gauss's law be still true?
$(c)$ $A$ small test charge is released at rest at a point in an electrostatic field configuration. Will it travel along the field line passing through that point?
$(d)$ What is the work done by the field of a nucleus in a complete circular orbit of the electron? What if the orbit is elliptical?
$(e)$ We know that electric field is discontinuous across the surface of a charged conductor. Is electric potential also discontinuous there?
$(f)$ What meaning would you give to the capacitance of a single conductor?
$(g)$ Guess a possible reason why water has a much greater dielectric constant $(=80)$ than say, mica $(=6)$