9.Straight Line
normal

The co-ordinates of the vertices $A$ and $B$ of an isosceles triangle $ABC (AC = BC)$ are $(-2,3)$ and $(2,0)$ respectively. $A$ line parallel to $AB$ and having a $y$ -intercept equal  to $\frac{43}{12}$ passes through $C$, then the co-ordinates of $C$ are :-

A

$\left( { - \frac{3}{4},1} \right)$

B

$\left( {1,\frac{{17}}{6}} \right)$

C

$\left( {\frac{2}{3},\frac{4}{5}} \right)$

D

$(1, 0)$

Solution

Let ${C}(\alpha, \beta)$

$\therefore(\alpha+2)^{2}+(\beta-3)^{2}=(\alpha-2)^{2}+\beta^{2}$

$\Rightarrow 8 \alpha-6 \beta+9=0$       ……$(1)$

Slope of $\mathrm{AB}=-\frac{3}{4}$

$\therefore$ Equation of line parallel to $AB$ and having

$y$ -intercept $=\frac{43}{12}$ is

$y=-\frac{3}{4} x+\frac{43}{12} \Rightarrow 9 x+12 y=43$

$\because$ It passes through $\mathrm{C}.$

$\therefore 9 \alpha+12 \beta=43$           …….$(2)$

Solving $( 1)$ and $( 2)$ we have $\alpha=1, \beta=\frac{17}{6}$

$\therefore \quad \mathrm{C} \equiv\left(1, \frac{17}{6}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.