The coefficient of $x^8$ in the expansion of $(1 -x^4)^4 (1 + x)^5$ is :-
$20$
$-32$
$-14$
$30$
In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to
The middle term in the expansion of ${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ in powers of $x$ is
$x^r$ occurs in the expansion of ${\left( {{x^3} + \frac{1}{{{x^4}}}} \right)^n}$ provided -
If coefficient of ${(2r + 3)^{th}}$ and ${(r - 1)^{th}}$ terms in the expansion of ${(1 + x)^{15}}$ are equal, then value of r is
If the coefficents of ${x^3}$ and ${x^4}$ in the expansion of $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ in powers of $x$ are both zero, then $ (a,b) $ is equal to