7.Binomial Theorem
hard

The coefficient of $x ^7$ in $\left(1-x+2 x^3\right)^{10}$ is $........$.

A

$960$

B

$950$

C

$940$

D

$960$

(JEE MAIN-2023)

Solution

$\text { General term }=\frac{10 !}{r_{1} ! \cdot r_{2} ! \cdot r_{3} !}(-1)^{r_2} \cdot(2)^{r_3} x^{r_2+3 r_3}$

where $r_1+r_2+r_3=10$ and $r_2+3 r_3=7$

$\begin{array}{lll}r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 5 & 4 & 1 \\ 7 & 1 & 2\end{array}$

Required coefficient

$=\frac{10 !}{3 ! .7 !}(-1)^7+\frac{10 !}{5 ! .4 !}(-1)^4(2)+\frac{10 !}{7 ! \cdot 2 !}(-1)^1(2)^2$

$=-120+2520-1440=960$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.