7.Binomial Theorem
hard

The coefficient of ${x^{100}}$ in the expansion of $\sum\limits_{j = 0}^{200} {{{(1 + x)}^j}} $ is

A

$\left( \begin{array}{l}200\\100\end{array} \right)$

B

$\left( \begin{array}{l}201\\102\end{array} \right)$

C

$\left( \begin{array}{l}200\\101\end{array} \right)$

D

$\left( \begin{array}{l}201\\100\end{array} \right)$

Solution

(a) ${T_{r + 1}} = {\,^{200}}{C_r}{(1)^{200 – r}}.{(x)^r}$

Hence coefficient of ${x^{100}} = {\,^{200}}{C_{100}} = \left( \begin{array}{l}200\\100\end{array} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.