The coefficient of $t^{50}$ in $(1 + t^2)^{25}(1 + t^{25})(1 + t^{40})(1 + t^{45})(1 + t^{47})$ is -
$1 + ^{25}C_5$
$1 + ^{25}C_5 + ^{25}C_7$
$1 + ^{25}C_7$
$2 + ^{25}C_5$
Let $0 \leq \mathrm{r} \leq \mathrm{n}$. If ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.
The coefficients of three successive terms in the expansion of ${(1 + x)^n}$ are $165, 330$ and $462$ respectively, then the value of n will be
Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$
If the coefficients of $x^{-2}$ and $x^{-4}$ in the expansion of ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ are $m$ and $n$ respectively, then $\frac{m}{n}$ is equal to