The middle term in the expansion of ${(1 + x)^{2n}}$ is

  • A

    $\frac{{1.3.5....(5n - 1)}}{{n!}}{x^n}$

  • B

    $\frac{{2.4.6....2n}}{{n!}}{x^{2n + 1}}$

  • C

    $\frac{{1.3.5....(2n - 1)}}{{n!}}{x^n}$

  • D

    $\frac{{1.3.5....(2n - 1)}}{{n!}}{2^n}{x^n}$

Similar Questions

The coefficient of the middle term in the binomial expansion in powers of $x$ of ${(1 + \alpha x)^4}$ and of ${(1 - \alpha x)^6}$ is the same if $\alpha $ equals

  • [AIEEE 2004]

The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$

Find $n,$ if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$