The middle term in the expansion of ${(1 + x)^{2n}}$ is

  • A

    $\frac{{1.3.5....(5n - 1)}}{{n!}}{x^n}$

  • B

    $\frac{{2.4.6....2n}}{{n!}}{x^{2n + 1}}$

  • C

    $\frac{{1.3.5....(2n - 1)}}{{n!}}{x^n}$

  • D

    $\frac{{1.3.5....(2n - 1)}}{{n!}}{2^n}{x^n}$

Similar Questions

If the term without $x$ in the expansion of $\left( x ^{\frac{2}{3}}+\frac{\alpha}{ x ^3}\right)^{22}$ is $7315$ , then $|\alpha|$ is equal to $...........$.

  • [JEE MAIN 2023]

In the expansion of the following expression $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ the coefficient of ${x^k}(0 \le k \le n)$ is

Coefficient of ${x^2}$ in the expansion of ${\left( {x - \frac{1}{{2x}}} \right)^8}$ is

If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is

  • [JEE MAIN 2019]

Let the coefficients of three consecutive terms $T_r$, $T _{ r +1}$ and $T _{ r +2}$ in the binomial expansion of $( a + b )^{12}$ be in a $G.P.$ and let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$. Then $p + q$ is equal to :

  • [JEE MAIN 2025]