Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
hard

The coefficient of apparent expansion of a liquid when determined using two different vessels $A$ and  $B$ are $\gamma_1$ and $\gamma_2$ respectively. If the coefficient of linear expansion of vessel  $A$  is $\alpha$, the coefficient of linear expansion of vessel $B$ is

A

$\frac{{\alpha {\gamma _1}{\gamma _2}}}{{{\gamma _1} + {\gamma _2}}}$

B

$\frac{{{\gamma _1} - {\gamma _2}}}{{2\alpha }}$

C

$\frac{{{\gamma _1} - {\gamma _2} + \alpha }}{3}$

D

$\frac{{{\gamma _1} - {\gamma _2}}}{3} + \alpha $

Solution

$\gamma_{\text {real}}=\gamma_{\text {app}}+\gamma_{\text {vessel}} ; \gamma_{\text {vessle}}=3 \alpha$

$ForvesselA$ $=\gamma_{\text {real}}=\gamma_{1}+3 \alpha$

$ForvesselB$ $=\gamma_{\text {real}}=\gamma_{2}+3 \alpha_{B}$

Hence, $\gamma_{1}+3 \alpha=\gamma_{2}+3 \alpha_{B}$

$\Rightarrow \alpha_{B}=\frac{\gamma_{1}-\gamma_{2}}{3}+\alpha$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.