Gujarati
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

The coefficient of apparent expansion of mercury in a glass vessel is  $153 × 10^{-6}{°C^{-1}}$ and in a steel vessel is $144 × 10^{-6}{°C^{-1}}$. If $\alpha$ for steel is $12 × 10^{-6}{°C^{-1}}$, then that of glass is

A

$9  \times 10{^{-6}}{°C^{-1}}$

B

$6  \times 10{^{-6}}{°C^{-1}}$

C

$36 \times 10{^{-6}}{°C^{-1}}$

D

$27  \times 10{^{-6}}{°C^{-1}}$

Solution

(a) $\gamma_{real} = \gamma_{app.} + \gamma_{vessel}$

$So (\gamma_{app.} + \gamma_{vessel})_{glass} = (\gamma_{app.} + \gamma_{vessel})_{steel}$

$⇒$ $ 153 × 10^{-6} + (\gamma_{vessel})_{glass} = (144 × 10^{-6} + \gamma_{vessel})_{steel}$

$Further, (\gamma_{vessel})_{steel} = 3\alpha = 3 × (12 × 10^{-6}) = 36 × 10^{-6} {°C^{-1}}$

$⇒$$ 153 × 10^{-6} + (\gamma_{vessel})_{glass} = 144 × 10^{-6} + 36 × 10^{-6}$

$⇒$$ (\gamma_{vessel})_{glass} = 3\alpha = 27 × 10^{-6}{°C^{-1}}$

$⇒$ $ \alpha = 9 × 10^{-6} {°C^{-1}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.