Gujarati
Hindi
11.Thermodynamics
normal

The coefficient of apparent expansion of mercury in a glass vessel is $153 \times 10^{-6}/\,^oC$ and in a steel vessel is $144 \times 10^{-6}/\,^oC$. If $\alpha $ for steel is $12 \times 10^{-6}/\,^oC$, then $\alpha $ that of glass is

A

$9 \times 10^{-6}/\,^oC$

B

$6 \times 10^{-6}/\,^oC$

C

$36 \times 10^{-6}/\,^oC$

D

$27 \times 10^{-6}/\,^oC$

Solution

$\gamma_{\text {real }}=\gamma_{\text {app. }}+\gamma_{\text {vessel }}$

So $\left(\gamma_{\text {app. }}, Y_{\text {vessel }}\right)_{\text {gass }}=\left(\gamma_{\text {app }}+\gamma_{\text {vessel }}\right)_{\text {steel }}$ $\Rightarrow 153 \times 10^{-6}+\left(\gamma_{\text {vessel}}\right)_{\text {steel }}=\left(144 \times 10^{-6}+Y_{\text {vessel }}\right)_{\text {steel }}$

Futher, $\left(\gamma_{\text {vessel }}\right)_{\text {glass }}=3 a=3 \times\left(12 \times 10^{-6}\right)=36 \times 10^{-6} \mathrm{PC}$

$\Rightarrow 153 \times 10^{-6}+\left(\gamma_{\text {vessel }}\right)_{\text {glass }}=144 \times 10^{-6}+36 \times 10^{-6}$

$\Rightarrow\left(\gamma_{\text {vessel }}\right)_{\text {gluss }}=3 \mathrm{a}=27 \times 10^{-6} \mathrm{PC}$

$\Rightarrow a=9 \times 10^{-6} /^{\circ} \mathrm{C}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.