The common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 + 6x + 8y - 24 = 0$ also passes through the point

  • [JEE MAIN 2019]
  • A

    $(-4, 6)$

  • B

    $(6, -2)$

  • C

    $(-6, 4)$

  • D

    $(4, -2)$

Similar Questions

$P$ is a point $(a, b)$ in the first quadrant. If the two circles which pass through $P$ and touch both the co-ordinate axes cut at right angles, then :

The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is

The radical axis of two circles and the line joining their centres are

The equation of the circle which intersects circles ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$and ${x^2} + {y^2} - 7x - 8y - 9 = 0$ at right angle, will be

The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:

  • [JEE MAIN 2014]