10-1.Circle and System of Circles
hard

The common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 + 6x + 8y - 24 = 0$ also passes through the point

A

$(-4, 6)$

B

$(6, -2)$

C

$(-6, 4)$

D

$(4, -2)$

(JEE MAIN-2019)

Solution

Circle ${x^2} + {y^2} = 4$

$ \Rightarrow {c_1}\left( {0,0} \right);{r_1} = 2$

and circle ${x^2} + {y^2} + 6x + 8y – 24 = 0$

$ \Rightarrow {c_2}\left( { – 3,4} \right);{r_2} = 7$

$ \Rightarrow d = {c_1}{c_2} = 5$

also $d = \left| {{r_1} – {r_2}} \right|$

circles touch internally

Equation of common tangent ${S_1} – {S_2} = 0$

$ \Rightarrow 6x + 8y – 20 = 0$

$ \Rightarrow 3x + 4y – 10 = 0$

Point $\left( {6, – 2} \right)$ satisfy it.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.