The condition $( a \cdot b )^2=a^2 b^2$ is satisfied when

  • A
    $a$ is parallel to $b$
  • B
    $a \neq b$
  • C
    $a \cdot b =1$
  • D
    $a \perp b$

Similar Questions

Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $

If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is

  • [AIPMT 2005]

What is the product of two vectors if they are parallel or antiparallel ? 

Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........