The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is
$0$
${A^2} - {B^2}$
$\overrightarrow B \times \overrightarrow A $
$2(\overrightarrow B \times \overrightarrow A )$
Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is
What is the angle between $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P \times \overrightarrow Q )$
Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$
The area of the parallelogram having diagonals ${3\hat i}\,\, + \,\,\hat j\,\, - \,\,2\hat k$ and $\hat i\,\, - \,\,3\hat j\,\, + \;\,4\hat k$ is