- Home
- Standard 11
- Physics
The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is $0.5 \ mm$ and there are $50$ divisions on the circular scale. The reading on the main scale is $2.5 \ mm$ and that on the circular scale is $20$ divisions. If the measured mass of the ball has a relative error of $2 \%$, the relative percentage error in the density is
$0.9 \%$
$2.4 \%$
$3.1 \%$
$4.2 \%$
Solution
Given
Screw gauge readings
Pitch $=0.5 \ mm$
Circular scale division $=50$
Main scale reading $=2.5 \ mm$
Least count $=\frac{0.5}{50}=0.01 \ mm$
Circular scale division reading $=2$ odivisions
Relative error $=2 \%$
So,
Then dimensions reading from screw gauge $=$ Diameter of a solid ball
S.G. Reading $=$ main scale reading $+\left(\frac{\text { pitch }}{\text { circular scale division }}\right) \times$ circular scale division reading
$\text { Diameter of solid ball }=2.5+\frac{0.5}{50} \times 20=2.7 \ mm$
As density $\rho=\frac{\text { mass }}{\text { Volume }}=\frac{M}{\frac{4 \pi}{3}\left(\frac{D}{2}\right)^3}$
The relative percentage error in the density is
$\frac{\Delta \rho}{\rho} \times 100=\left(\frac{\Delta M }{ M }+\frac{3 \Delta D }{ D }\right) \times 100$
$\% \text { error }=\left(\frac{\Delta M }{ M } \times 100+\frac{3 \Delta D }{ D }\right) \times 100$
$=\left(2+3 \times \frac{0.01}{2.7}\right) \times 100$
$=3.1 \%$