$\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|=0$ હોય તો $a,b,c$ એ . . . શ્રેણીમાં છે.
સમગુણોતર
સમાંતર
સ્વરિત
એકપણ નહી.
નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.
જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.
જો ત્રિકોણનું ક્ષેત્રફળ $5$ એકમ હોય અને તેના બે શિરોબિંદુ $A(2, 1), B(3, -2)$ હોય અને ત્રીજું શિરોબિંદુ રેખા $y = x + 3$ પર આવેલ હોય તો ત્રીજા શિરોબિંદુના યામ મેળવો.
અંતરાલ $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ માટે $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ ના ભિન્ન વાસ્તવિક બીજની સંખ્યા મેળવો.