The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ is equal to zero if $a,b,c$ are in
$G. P.$
$A. P.$
$H. P.$
None of these
In a $\Delta ABC,$ if $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
The values of $x,y,z$ in order of the system of equations $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4,$ are
The value of $a$ for which the system of equations
$a^3x + ( a + 1)^3y + (a + 2)^3z = 0$ ; $ax + (a + 1) y + ( a + 2) z = 0$ ; $x + y + z = 0$, has a non zero solution is
$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$where $a = i,b = \omega ,c = {\omega ^2}$, then $\Delta $is equal to